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Precise, reproducible measurements of liver iron concentration (LIC) are critical for the 

early diagnosis, treatment and follow-up of patients with primary or secondary iron 

overload. Magnetic resonance imaging (MRI), which exploits the paramagnetic properties of 

iron, has gained acceptance as a noninvasive and accurate tool for LIC assessment. Two 

different techniques have been described: methods measuring signal intensity ratio between 

liver and muscles (Gandon, et al 2004), and relaxometry methods measuring absolute R2 (St 

Pierre, et al 2005) or R2* (Wood, et al 2005) values, which increase proportionally to iron 

concentration. The gradient-echo R2* technique is most widely used in clinical practice 

(Anderson, et al 2001, Hankins, et al 2009, Meloni, et al 2011, Wood, et al 2005), because it 

is faster and easier than R2 acquisition.

R2* values can be converted to underlying tissue iron concentration, using appropriate 

calibration curves. The first calibration curve was proposed by Anderson et al (2001) and 

later updated by Garbowski et al (2009). This methodology has been implemented in a 

popular analysis software named “ThalassaemiaTools”, a CMRtools (Cardiovascular 
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Imaging Solutions Ltd, London, UK) plug-in. A second calibration curve was proposed 

(Wood et al 2005) and later confirmed (Hankins et al 2009), but it demonstrated a 15% 

lower scaling coefficient between R2* and LIC.

The two R2* analysis methods differ in the size of analysed region of interest (ROI) and the 

model used to fit the signal decay at different echo times. A systematic comparison of R2* 

and LIC values obtained with the two methodologies has never been reported. This study 

aimed to detect the potential differences in R2* values obtained with different post-

processing approaches and to explore whether the detected differences would be corrected 

when converted into LIC values.

Single- and multi-centre patient cohorts were used. The single-centre cohort included 45 

patients (25 males, 16.4±10.2 years) scanned at the Children’s Hospital of Los Angeles 

(CHLA). The multi-centre cohort (N=47; 19 females, 28.1±8.9 years) was baseline data 

from a phase II clinical trial of the iron chelator FBS0701 and was included to obtain higher 

generalizability

The study was approved by the CHLA Committee for the Protection of Human Subjects and 

the institutional review boards of all participating hospitals.

With the ThalassaemiaTools, a ROI was defined in an area of homogeneous liver tissue. All 

pixels were averaged together and fit to a single-exponential model. Later echo times were 

manually excluded from the fit in images where iron-mediated signal loss was high (Figures 

1a–1b). R2* values (=1000/T2*) were converted into LIC by (Garbowski, et al 2009):

[Equation 1]

In our laboratory R2* measurements were performed using a custom-written software. The 

ROI included the entire liver profile in the slice, excluding the major hilar vessels. The 

signal in each pixel was fit to an exponential-plus-constant model, producing a R2* map 

(Figure 1c). The mean was calculated (R2*Wood). LIC values (LICWood) were calculated as:

[Equation 2]

R2* assessment, by either method, is limited to LIC<40 mg/g because rapid signal decay 

precludes adequate characterization of the relaxation curve for higher iron concentrations.

In order to compare the two approaches linear regression analysis and Bland-Altman 

technique were used.

The results are indicated in Table I and Supplemental Figures 1, 2.

For both the cohorts the relationship between R2*Wood and R2*Pennell values was well 

described by a line. Results were unbiased for R2*<300 Hz, but large systematic differences 

in R2* appeared at higher values, with the exponential-plus-constant fits averaging ~20% 

higher. For the single-centre cohort the mean difference (± standard deviation) was 

54.7±85.7 Hz (95% confidence intervals [CI], 28.9–80.5 Hz), corresponding to a percentage 
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R2* difference of 9.1±11.8%. Individually, 41 patients (93%) had R2*Wood>R2*Pennell 

value. For the multi-centre cohort the mean difference was 59.5±76.7 Hz (95%CI, 36.9–81.9 

Hz), corresponding to a relative difference of 8.5±13.8%.

When the technique-appropriate calibration curves were used, this bias effectively 

disappeared, producing excellent agreement between the two approaches. For the single-

centre cohort the mean difference was −0.8±1.5 mg/g/dry weight (dw) (95%CI, −1.3 to −0.3 

mg/g/dw). Individual LIC estimates had 95%CI from −3.8 to 2.2 mg/g/dw. For the multi-

centre cohort the mean difference was −1.0±1.4 mg/g/dw (95%CI, −1.4 to −0.6 mg/g/dw), 

indicating a small, systematic bias. Individual LIC estimates had 95%CI of −3.8 to 1.8 

mg/g/dw.

There is ongoing discussion as to which of the two decay models most closely describes the 

true tissue relaxation. By simulation (true value known), the key determinant is whether 

there is any other signal contribution besides iron. If there is any background signal from 

non-iron containing tissue, the exponential-plus-constant model is more accurate (Positano, 

et al 2009). If there is no signal contribution from bile, blood or fat, the truncated 

exponential is more appropriate (Beaumont, et al 2009).

Given that the two approaches sample the liver differently, one could potentially attribute 

the observed R2* differences to systematic gradients in iron distribution with proximity to 

the hilum. This was demonstrated to be untrue (McCarville, et al 2010, Positano, et al 

2009).

The 0.8–1 mg/g residual bias between the two LIC estimates is clinically irrelevant at higher 

values, but could be important when assessing the risk of over chelation. Some of the bias is 

evident from inspection of Equations 1 and 2; the calibration curves have a 0.5 mg/g 

difference in y-intercept. To ensure good extrapolation into normal iron levels, the y-

intercept in Equation 2 was constrained such that the calibration curve passes through the 

middle of the normal range (Wood, et al 2005), while Equation 1 was not. To illustrate the 

potential consequences of this difference, R2* values in healthy volunteers are typically 

reported to be 30–40 Hz. Equation 2 predicts LIC values of 1.0–1.2 mg/g and Equation 1 

predicts LIC values of 1.4–1.6 mg/g. Practitioners who use Equation 1 should know that 

“normal” LIC corresponds to a value around 1.5 mg/g and base their therapeutic judgments 

about that set-point.

In conclusion, both signal decay models yield clinically-acceptable estimates of LIC if the 

ROI’s are drawn correctly and the proper calibration curve is applied to correct for 

systematic differences in R2* estimation. Proper choice of technique at any given institution 

will depend on software availability and training. However, in the literature, R2* values 

should be converted into LIC values using the appropriate calibration curve to facilitate 

comparisons across studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) and b) Screenshot of CMRtools software (region of interest definition in the left and 

signal decay fitting in the right) for a patient with moderate iron overload and for a patient 

with severe iron overload, respectively. For the patient with severe iron overload, the single-

exponential model was not able to compensate the signal offset. In order to obtain an 

optimal fitting (R-square > 0.99), the last echo times (TEs) were excluded by de-selecting 

them. The final T2* was 1.05 ms, corresponding to a R2* of 952.4 Hz and a liver iron 

concentration (LIC) of 29.3 mg/g/dw. c) R2* map obtained with the Wood’s approach for 
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the same patient in Figure 1b. The mean R2* for this distribution was 1087.9 Hz, 

corresponding to a LIC of 29.5 mg/g/dw.
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